Fish-Net: Networking Evolved
  • Introduction
    • Getting Started
    • Showcase
      • Upcoming Releases
    • Legal Restrictions
    • Pro, Projects, and Support
    • Business Support
    • Branding
  • Manual
    • General
      • Unity Compatibility
      • Changelog
        • Development Road Map
        • Major Version Update Solutions
      • Development
      • Performance
        • Benchmark Setup
        • Fish-Networking Vs Mirror
      • Terminology
        • Miscellaneous
        • Communicating
        • Server, Client, Host
      • Transports
      • Add-ons
        • Edgegap and other Hosting
        • Fish-Network-Discovery
      • Feature Comparison
      • Upgrading To Fish-Networking
    • Guides
      • Frequently Asked Questions (FAQ)
      • Creating Bug Reports
        • Report Example
      • Technical Limitations
      • Third-Party
      • Getting Started
        • Commonly Used Guides
        • Ownership - Moving Soon
        • Step-by-Step
          • Getting Connected
          • Preparing Your Player
      • Components
        • Managers
          • NetworkManager
          • TimeManager
          • PredictionManager
          • ServerManager
          • ClientManager
          • SceneManager
          • TransportManager
            • IntermediateLayer
          • StatisticsManager
          • ObserverManager
            • HashGrid
          • RollbackManager (Pro Feature)
        • Transports
          • FishyWebRTC
          • Bayou
          • FishyEOS (Epic Online Services)
          • FishyFacepunch (Steam)
          • FishyRealtime
          • FishySteamworks (Steam)
          • FishyUnityTransport
          • Multipass
          • Tugboat
          • Yak (Pro Feature)
        • Prediction
          • Network Collider
            • NetworkCollision
            • NetworkCollision2D
            • NetworkTrigger
            • NetworkTrigger2D
          • OfflineRigidbody
          • PredictedOwner
          • PredictedSpawn
        • Utilities
          • Tick Smoothers
            • NetworkTickSmoother
            • OfflineTickSmoother
          • MonoTickSmoother [Obsolete]
          • DetachableNetworkTickSmoother [Obsolete]
          • BandwidthDisplay
          • DefaultScene
          • PingDisplay
        • Authenticator
        • ColliderRollback
        • NetworkAnimator
        • NetworkBehaviour
        • NetworkTransform
        • NetworkObject
        • NetworkObserver
      • InstanceFinder
      • Ownership
        • Using Ownership To Read Values
      • Spawning and Despawning
        • Predicted Spawning
        • Nested NetworkObjects
        • Object Pooling
      • Components
      • NetworkBehaviour
      • NetworkObjects
      • Attributes, Quality of Life
      • Remote Procedure Calls
        • Broadcast
      • SyncTypes
        • Customizing Behavior
        • SyncVar
        • SyncList
        • SyncHashSet
        • SyncDictionary
        • SyncTimer
        • SyncStopwatch
        • Custom SyncType
      • Observers
        • Modifying Conditions
        • Custom Conditions
      • Automatic Serializers
      • Custom Serializers
        • Interface Serializers
        • Inheritance Serializers
      • Addressables
      • Scene Management
        • Scene Events
        • Scene Data
          • SceneLookupData
          • SceneLoadData
          • SceneUnloadData
        • Loading Scenes
        • Unloading Scenes
        • Scene Stacking
        • Scene Caching
        • Scene Visibility
        • Persisting NetworkObjects
        • Custom Scene Processors
          • Addressables
      • Transports
        • Multipass
      • Prediction
        • What Is Client-Side Prediction
        • Configuring PredictionManager
        • Configuring TimeManager
        • Configuring NetworkObject
        • Offline Rigidbodies
        • Interpolations
        • Creating Code
          • Controlling An Object
          • Non-Controlled Object
          • Understanding ReplicateState
            • Using States In Code
            • Predicting States In Code
          • Advanced Controls
        • Custom Comparers
        • PredictionRigidbody
        • Using NetworkColliders
      • Lag Compensation
        • States
        • Raycast
        • Projectiles
    • Server Hosting
      • Edgegap - Official Partner
        • Getting Started with Edgegap
      • Hathora
        • Getting Started with Hathora
      • Amazon Web Services (AWS)
        • Getting Started with AWS
    • API
Powered by GitBook
On this page
  • SyncTypes
  • Broadcasts
  • Remote Procedure Calls
  • Channel
  • Eventual Consistency
  1. Manual
  2. General
  3. Terminology

Communicating

There are a variety of ways to send communications between server and clients.

Below are several terms you will become familiar with when wanting to send data.

SyncTypes

SyncTypes reside on objects and are data driven variables or collections. SyncTypes send at adjustable intervals. When a SyncType is modified on an object the changes are automatically sent from the server to clients. Clients will receive the changes locally on the same object. A great example is a health variable. You may update the health variable as a player takes damage, and the new values will be sent to clients.

Broadcasts

Unlike states, broadcasts are not object bound. Broadcasts can be used for any number of tasks but more commonly preferred for communicating data groups between server and clients. Broadcasts can be received and sent from anywhere in your code.

Remote Procedure Calls

Remote Procedure Calls(RPCs) are another object bound communication type. While SyncTypes are used to synchronize variables, RPCs allow you to run logic on server and clients. RPCs are not limited to an interval like states, RPCs are sent immediately.

Channel

Two channels are supported, Reliable and Unreliable. Data sent reliably is guaranteed to arrive and be processed in the order it was sent. Unreliable sends use less bandwidth but can infrequently arrive out of order, or not at all.

Eventual Consistency

Some features of Fish-Networking internally use eventual consistency; an example of this are unreliable SyncVars or the NetworkTransform component. These features use the unreliable channel to send datas to consume less bandwidth and provide better performance, but you can still use them knowing that even if data is dropped or arrives out of order the features will eventually resolve the desynchronizations automatically.

PreviousMiscellaneousNextServer, Client, Host

Last updated 1 year ago